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ABSTRACT: A technique for model initialization using three-dimensional radar reflectivity data has been developed and ap-
plied within the NOAA 13-km Rapid Refresh (RAP) and 3-km High-Resolution Rapid Refresh (HRRR) regional forecast
systems. This technique enabled the first assimilation of radar reflectivity data for operational NOAA forecast models, critical
especially for more accurate short-range prediction of convective storms. For the RAP, the technique uses a diabatic digital
filter initialization (DFI) procedure originally deployed to control initial inertial gravity wave noise. Within the forward-model
integration portion of diabatic DFI, temperature tendencies obtained from the model cloud/precipitation processes are
replaced by specified latent heating–based temperature tendencies derived from the three-dimensional radar reflectivity data,
where available. To further refine initial conditions for the convection-allowing HRRR model, a similar procedure is used in
the HRRR, but without DFI. Both of these procedures, together called the “Radar-LHI” (latent heating initialization) tech-
nique, have been essential for initialization of ongoing precipitation systems, especially convective systems, within all NOAA
operational versions of the 13-km RAP and 3-km HRRR models extending through the latest implementation upgrade at
NCEP in 2020. Application of the latent heat–derived temperature tendency induces a vertical circulation with low-level con-
vergence and upper-level divergence in precipitation systems. Retrospective tests of the Radar-LHI technique show significant
improvement in short-range (0–6 h) precipitation system forecasts, as revealed by reflectivity verification scores. Results pre-
sented document the impact on HRRR reflectivity forecasts of the radar reflectivity initialization technique applied to the
RAP alone, HRRR alone, and both the RAP and HRRR.

SIGNIFICANCE STATEMENT: The large forecast uncertainty of convective situations, even at short lead times,
coupled with the hazardous weather they produce, makes convective storm prediction one of the most significant short-
range forecast challenges confronting the operational numerical weather prediction community. Prediction of heavy
precipitation events also requires accurate initialization of precipitation systems. An innovative assimilation technique
using radar reflectivity data to initialize NOAA operational weather prediction models is described. This technique,
which uses latent heating specified from radar reflectivity (and can accommodate lightning data and other convection/
precipitation indicators), was first implemented in 2009 at NOAA/NCEP and continues to be used in 2022 in the
NCEP-operational RAP and HRRR models, making it a backbone of the NOAA rapidly updated numerical weather
prediction capability.

KEYWORDS: Thunderstorms; Radars/Radar observations; Data assimilation; Numerical weather prediction/forecasting;
Regional models

1. Introduction

Accurate prediction of the initiation and evolution of
precipitation systems, especially of convective storms, has
remained a major forecast challenge. Skillful prediction of
mesoscale environmental fields is a prerequisite, including
temperature, moisture, and winds in the lower troposphere
and, especially, in the boundary layer. For the warm-season
convective initiation (CI) challenge, in which potentially
large areas of positive convective available potential energy
(CAPE) exist, accurate analysis and prediction of small

capping inversions and weak forcing mechanisms are cru-
cial. Frequent data from surface stations, satellites, and air-
craft all play a key role over the United States in providing
the asynoptic observations needed to improve short-range
forecasts of mesoscale convective environments. At night,
the CI forecast problem is more difficult, as CI is often
rooted above the surface layer, decreasing the utility of sur-
face observations.

For ongoing precipitation systems, the U.S. national net-
work of WSR-88D radars (Kelleher et al. 2007; Zhang et al.
2011, 2016) provides an invaluable set of observations. These
observations have greatly improved operational thunderstorm
warning and nowcasting and spurred research on computation-
ally efficient methods for using these observations to initialize
operational models. Over the past 25 years, a variety of effec-
tive, but computationally intensive methods, for variational
and ensemble-based assimilation of radar data have been
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demonstrated (e.g., Sun and Crook 1997, 1998; Caya et al. 2005;
Aksoy et al. 2009, 2010; Wang et al. 2013; Wheatley et al. 2015;
Gustafsson et al. 2018; Wang et al. 2019). Wattrelot et al. (2014)
describe their approach in AROME-France to assimilate re-
trieved relative humidity (RH) profiles derived from radar
reflectivity observations; they considered derived estimates of
RH superior to direct reflectivity observations for data assim-
ilation (DA) due to higher predictability of RH as compared
to hydrometeor size distributions. Approaches for assimila-
tion of radar data vary from “proxy” assimilation techniques
like latent heat nudging (e.g., Jones and Macpherson 1997),
to indirect variational assimilation of hydrometeors derived
from observed reflectivity (e.g., Chen et al. 2021), to direct
variational assimilation (e.g., Hawkness-Smith and Simonin
2021).

The large forecast uncertainty associated with convective
situations, even at very short lead times, coupled with the se-
verity of weather often associated with convective storms,
makes convective storm prediction one of the most significant
short-range forecast challenges confronting the operational
numerical weather prediction community. As an example, the
commercial aviation industry is particularly vulnerable to
convective storms, with resulting flight delays and diversions
spiking every summer (e.g., Sauer et al. 2019). Prediction of
severe thunderstorms, tornadoes, and convective heavy rain-
fall events also requires accurate initialization of convective
storms. Even in larger-scale winter storms, bands and small-
scale areas of heavy snow and mixed precipitation are driven
by rapidly changing local circulations related in part to latent
heat release within these systems.

To that end, a radar–data assimilation technique was devel-
oped that requires negligible additional computational resour-
ces, while allowing effective use of radar reflectivity data for
improved hourly updated weather predictions from the
NOAA 13-km Rapid Refresh (Benjamin et al. 2016; B16) and
3-km High-Resolution Rapid Refresh (HRRR; B16, Dowell
et al. 2022, hereafter D22; James et al. 2022, hereafter J22)
models. The North American domain for RAP and the lower-
48 U.S. domain for HRRR are shown in Fig. 2 in D22. The
technique described in this paper uses radar observations to
estimate latent heating for model initialization of precipita-
tion systems (denoted herein as radar latent heating initializa-
tion or “Radar-LHI”), thereby achieving an effective radar
reflectivity data assimilation method, the first such used in a
NOAA operational weather model.

Latent heating (LH) from the conversion of water vapor
to liquid/ice phase is an essential driver for upward vertical
motion on both the convective scale and the synoptic scale.
Danard (1964) summarized the effects of LH on cyclone de-
velopment using the v equation. Fiorino and Warner (1981)
showed how specification of latent heating could help with
hurricane initialization. Wang and Warner (1988) provided
an example of LH specification during a sequence of 1-h
periods for a severe weather case using a model with 30-km
grid spacing. Since then, applications of specifying LH for
radar/precipitation DA has been demonstrated by Jones
and Macpherson (1997) and, more recently, by the Canadian
mesoscale model (Jacques et al. 2018). Other studies describing

LH specification or “nudging” include Leuenberger and Rossa
(2007), Stephan et al. (2008), Huang et al. (2018), and Huo et al.
(2021). However, none of these have used LH specification
within DFI as described in this paper. An alternate radar-
assimilation strategy to LH specification has been to directly
specify relative humidity profiles (e.g., Wattrelot et al. 2014;
Martet et al. 2022) instead of letting LH-induced vertical mo-
tion result in higher relative humidity. A summary of different
radar-reflectivity DA techniques including direct use of radar
reflectivity as a state variable is provided in Duda et al. (2019).
Observations or estimates of condensate from remote sensing
via radar, ground- or satellite-based lightning sensors, or satel-
lite precipitation estimates can be a powerful addition for data
assimilation via the radar-LHI technique or other radar-DA
methods.

We describe in this paper the radar-LHI technique that has
been developed and applied to both the 13-km RAP and the
3-km HRRR models. This general radar-LHI technique in-
cludes two related specific procedures using estimated latent
heating primarily from a national mosaic of radar reflectivity
data: one procedure for initializing the RAP model and a sec-
ond procedure for further refining initial conditions for the
HRRR model. For the RAP, the procedure uses a diabatic
digital filter initialization (DFI, Huang and Lynch 1993; Lynch
and Huang 1994) to apply the latent heating (denoted as
“radar-LH-DFI” in this paper). For the HRRR, the procedure
uses a forward model integration (during a pre-forecast hour)
to apply the latent heating (denoted as “forward-radar-LH” in
this paper).

The operational RAP and HRRR (through 2022 with the
RAPv5/HRRRv4) use both of these related procedures and in-
clude a simple method for incorporation of lightning data from
land-based networks via a lightning-based proxy reflectivity, as
described by Weygandt et al. (2008) and B16. For versions
through RAPv4/HRRRv3, the radar-LH-DFI-initialized RAP
fields provided a background for the HRRR forward-radar-LH.
This RAP-HRRR linkage was modified in the HRRRv4, with
the introduction of the HRRR Data Assimilation System
(HRRRDAS) 3-km ensemble data assimilation described by
D22. More information on the use of the various assimilation al-
gorithms in the different operational versions of the HRRR is
given in section 3 of D22 (especially their Fig. 3 and sections 3c
and 3d). In addition, a severe convection case study comparison
of HRRRv3 versus HRRRv4 is shown in D22 (their section 4b
and Fig. 5). The HRRRv3 includes use of the radar-LH-DFI
assimilation procedure in the parent RAPmodel and the forward-
radar-LH procedure in the HRRR. For the HRRRv4, the
HRRRDAS-based ensemble assimilation algorithm is used (for
radar reflectivity as well as conventional observations) in addition
to the HRRR-based forward-radar-LH. Also, the HRRRv4 does
not directly benefit from the RAP radar-LH-DFI because the
RAP fields have been replaced by the HRRRDAS ensemble
mean fields for initializing the HRRR pre-forecast hour
(but the RAP fields are used as input to the HRRRDAS as
described in section 3d of D22). In this paper, we describe
both the RAP and the HRRR radar-LHI procedures, pro-
vide illustrative examples of their effectiveness, and show
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statistical skill assessments of the use of the two procedures
individually and in combination.

2. Description of the radar reflectivity latent heating
initialization technique

The Radar-LHI technique described in this section comple-
ments the 3-km ensemble data assimilation described in D22.
An overview of the DA flowcharts for HRRRv1–3 (with
Radar-LHI) versus HRRRv4 is provided in Fig. 3 in D22.
Details about the configuration of the HRRR forecast
model are provided in D22. For both the RAP and HRRR ap-
plications, the radar-LHI technique relies on specification of a
three-dimensional (3D) latent heating field from the 3D
gridded national radar reflectivity mosaic data provided by
the Multi-Radar Multi-Sensor (MRMS, Zhang et al. 2011, 2016)
product. The real-time MRMS feed of 3D gridded national mo-
saic reflectivity data, covering the contiguous United States, has
been essential for the development and operational implemen-
tation of the radar-LHI model initialization technique.

The mapping of 3D radar reflectivity to 3D latent heating
on the model grid uses the following relationship:

LH(i, j, k) � {[1000=p(i,j,k)]Rd=Cp}
3 (Ly 1 Lf )f Ze(i, j,k)[ ]

=(CpDtcond)
{ }

, (1)

where LH is the latent heating rate (in K s21; potential tem-
perature change rate), p is pressure (hPa) on the 3D (i, j, k)
model grid points, and thermodynamic constants (Cp, Rd, Ly, Lf)
have their normal definitions. The f(Ze) term represents the
conversion of the local radar reflectivity to rain condensate
mixing ratio based on Marshall and Palmer (1948). The simpli-
fying assumption to convert the reflectivity to just rainwater

reflects the under-determinism in the mapping of reflectivity to
hydrometeors. The inclusion of Lf may lead to slightly exagger-
ated heating in some cases, but may provide a better estimate
of the total latent heating for deep convection in mid latitudes.
The term Dtcond is an assumed time period over which this full
condensate is produced from water vapor}in essence, a con-
vective cloud time scale. Details on assumed Dtcond values for
both the RAP and HRRR are provided below (including in
Table 2).

This specification of latent heating from reflectivity is sub-
ject to the following conditions. Latent heating is only calcu-
lated where the MRMS reflectivity exceeds 28 dBZ, thereby
restricting application of the heating to regions with active on-
going convection or moderate or greater active condensation
processes. The latent heating rate is set to zero where the ob-
served reflectivity is less than or equal to 0 dBZ, leading to a
“suppression” of spurious convection/precipitation processes
that may exist in the model fields. For regions that are outside
the 3D radar mosaic coverage or regions where the reflectivity
values are between 0 and 28 dBZ, the model-computed tem-
perature tendency is retained. This 28-dBZ lower threshold
restricts the heating to regions of moderate to strong conden-
sate production, for which latent heating is likely a significant
factor driving the local atmospheric evolution.

For radar observed volumes with at least 200 hPa of depth
(after interpolation to the model grid), radar-based temp-
erature tendencies are extended from the lowest observed
level down to the model-defined top of the well-mixed plane-
tary boundary layer for each grid column. This extension ad-
dresses adverse impacts that can occur from vertically limited
areas of high level heating due to limitations in low-level ra-
dar coverage. Additional RAP and HRRR model application
details are described in the following subsections.

TABLE 2. Condensation time period (Dtcond) applied to calculate latent heating from radar reflectivity for versions of RUC, RAP,
and HRRR (year of NCEP model implementation indicated in parentheses). Condensate inferred from reflectivity is assumed to be
formed over this time period, roughly a convective-cloud time scale.

RUC
(2008)

RAPv1
(2012)

RAPv2/HRRRv1
(2014)

RAPv3/HRRRv2
(2016)

RAPv4/HRRRv3
(2018)

RAPv5/HRRRv4
(2020)

Condensation Dt}DFI 30 min 10 min 10 min 10 min 20 min 20 min
Condensation Dt}forward } } 20 min 20 min 20 min 20 min

TABLE 1. Significant events related to radar reflectivity processing and assimilation using Radar-LHI for the hourly updated NOAA
Rapid Update Cycle (RUC), Rapid Refresh (RAP), and High-Resolution Rapid Refresh (HRRR) models.

Year Event

1998 Application of adiabatic digital filter initialization (DFI) in RUC model
2006 Application of diabatic DFI in RUC model
2006 CONUS 3D radar reflectivity mosaic developed by NSSL (Multi-Radar Multi-Sensor)
2008 Initial radar-LHI through diabatic DFI (radar-LH-DFI) in 13-km operational RUC
2012 Radar-LHI through diabatic DFI (radar-LH-DFI) in 13-km RAP version 1
2014 Radar-LHI (forward-radar-LH) added through 1-h pre-forecast in 3-km HRRRv1
2016 Updated radar-LHI in RAPv3/HRRRv2
2018 Further update to radar-LHI for RAPv4/HRRRv3
2020 Introduction of 3km-ensemble DA for HRRRv4 (D22), retain radar-LHI
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a. Diabatic DFI with radar reflectivity initialization
(radar-LH-DFI) in RAP

As part of the model initialization procedure for the RAP
model, a backward–forward diabatic DFI (Huang and Lynch
1993; Lynch and Huang 1994) is applied to control inertial
gravity waves that may be generated by imbalances resulting
from the model analysis, as described by Peckham et al.
(2016) and B16 (their sections 2c and 2d). This application of
a DFI dates back to the NOAA hourly updated Rapid Up-
date Cycle (RUC) model (see Fig. 2 of Benjamin et al. 2004)
run at NCEP through 2012 (Table 1) and has been essential
for the hourly assimilation cycle. The original DFI application
in the RUC used an adiabatic filter (Lynch and Huang 1992),
but was upgraded to allow for a diabatic forward integration in
2006 to improve initial water vapor fields. This diabatic DFI
application incorporated subgrid-scale model processes includ-
ing boundary layer and cloud/diabatic processes within its re-
sulting balance, and also allowed for a radar reflectivity
initialization procedure using the model.

Application of the diabatic DFI, including the radar-
LH-DFI procedure within the RAP model integration, is
shown in Fig. 1. The model first runs backward without dia-
batic or viscid processes (Peckham et al. 2016) for a short
period (20 min in this case), applying the digital filter
weighting to values from each time step during this back-
ward integration. A weighted average of these model states
provides a new model state valid at the midpoint of the
backward integration (t = 210 min in this case). Starting
with this new state, a full-physics (with diabatic and viscid
processes) version of the model is then integrated forward
in time for the same time length, while accumulating a digital-
filter-weighted mean from the model states at each time step,
yielding a new model state valid at the original model initial
time (t = 0 min). As noted above, this RAP-only procedure
within radar-LHI is designated as radar-LH-DFI.

To illustrate the application of DFI to improve balance in
initial conditions, Fig. 2 shows the time evolution of a model
noise parameter |dps/dt| (Huang and Lynch 1993; Benjamin
et al. 2004) with and without DFI for the RAP model. This

noise parameter (domain-mean absolute surface pressure
change calculated each time step, capturing high-frequency
oscillations) is shown for the backward and forward model in-
tegrations during the DFI and then for the subsequent free-
forecast. Comparison of the two free-forecast curves illustrates
the significant noise reduction provided by the DFI during the
first few hours of the model free-forecast. The diabatic DFI
has been used effectively in both the RUC and the RAP, with
application each hour resulting in quieter 1-h forecasts, leading
to smaller observation-forecast analysis innovations, and in
turn to further quieter subsequent 1-h forecasts.

For the addition of the radar-LH-DFI procedure in the dia-
batic DFI (Fig. 1), a simple change is made within the full
physics forward model portion of the DFI, namely, the prog-
nostic temperature tendencies computed at each time step
from the explicit microphysics scheme and the cumulus param-
eterization scheme are replaced by a three-dimensional tem-
perature latent heating–based tendency derived from the 3D
radar reflectivity data. A latent heating contribution from land-
based lightning data networks is also included (Weygandt et al.

FIG. 1. Application of specified latent heating within the diabatic DFI used in the Rapid
Refresh model (denoted as “radar-LH-DFI”). Three-dimensional latent heating is specified
for the forward DFI from radar reflectivity data (in yellow and proxy lightning data are in
green) as described in the text.

FIG. 2. Noise parameter [mean absolute surface pressure ten-
dency (hPa hr21) averaged over domain] for Rapid Refresh us-
ing diabatic DFI application, including specification of latent
heating from radar and lightning data. DFI was applied over a
40-min period in this test, but the normal DFI period for RAP
is 20 min, as shown in Fig. 1.
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2008). Over the eastern portion of the WSR-88D coverage re-
gion, augmentation of the radar reflectivity-based latent heat-
ing field and resultant impacts from the lightning data are
minimal, while slightly greater impacts from the lightning data
are likely over the western portion of the WSR-88D region,
due to limitations in the WSR-88D coverage (Klazura and
Imy 1993). For this application with the RAP, a condensation
time period (Dtcond) of 10 min was assumed. Values ranging
from 5 to 20 min have been tested, and Table 2 provides a
summary of the convective time scale used for both RAP and
HRRR models for the various operational implementations.
As can be seen in Table 2, a change to a longer time period
(resulting in a reduction of the strength of the heating) oc-
curred in the RAP with the RAPv4 operational implementa-
tion. The RAPv2/HRRRv1 values (which are the same as the
RAPv3/HRRRv2 values) for Dtcond from Table 2 are used for
this study. For the RAP application, additional convective
suppression is accomplished in regions with no reflectivity by
restricting the activation of the convective parameterization
(Grell and Freitas 2014), during the first 30 min of the other-
wise free-forecast in these regions.

b. Overall RAP/HRRR radar reflectivity assimilation
technique including forward integration with radar
reflectivity initialization (forward-radar-LH) in HRRR

For the HRRR, the radar-LHI technique is applied in a dif-
ferent manner, as part of the overall RAP and HRRR model
initialization procedures. Figure 3 provides a schematic work-
flow diagram illustrating steps taken for the RAP and HRRR
model initialization, including the radar-LHI applications.
The hourly RAP model initialization steps (indicated in the
tan-shaded upper portion of Fig. 3) include applications of the
following: 1) a GSI hybrid ensemble–3DVAR analysis using
ensemble background covariance information provided from
GDAS ensemble members (Hu et al. 2017) using a wide variety

of observations (see B16, their Table 4; D22, their section 3);
2) a stratiform cloud-hydrometeor data assimilation (SCHDA;
Benjamin et al. 2021); and 3) the diabatic DFI with the radar-
LH-DFI procedure (as described in the previous section), fol-
lowed by the RAP free-forecast. For the HRRR, radar-based
latent heating is applied in a forward-only 1-h spinup cycle
(forward-radar-LH) as detailed below.

For the 3-km HRRR model, additional application of DFI
was found to add no value over the forward-radar-LH and in-
curred more computational expense. In contrast, the forward-
radar-LH procedure, in which MRMS-derived latent heating
rate estimates are substituted in place of model-predicted val-
ues from the cloud microphysics temperature tendencies dur-
ing a 1-h model pre-forecast period, was found to yield further
benefit in addition to the RAP application of radar-LH-DFI.
As indicated in Fig. 3, this forward-radar-LH procedure is in-
cluded in the overall HRRR initialization steps, which include:
1) interpolation of the RAP post-radar-LH-DFI grids for all
prognostic variables, including hydrometeors, from the previ-
ous hour to the HRRR 3-km grid, 2) completion of a 3-km 1-h
pre-forecast numerical integration including application of the
forward-radar-LH using radar observations, and 3) application
of the GSI hybrid analysis and SCHDA at the model initial
time (following the pre-forecast hour). It is important to note
that all other components of the RAP/HRRR assimilation sys-
tem depicted in the Fig. 3 flowchart (the RAP and HRRR ap-
plications of the GSI analysis and the SCHDA) are used,
including assimilation of the standard sets of observations (see
details in B16 and J22), and were not varied in the different ex-
periments described in this study.

Details on the application of the HRRR forward-radar-LH
procedure during the 1-h pre-forecast numerical integration
are as follows. MRMS radar reflectivity fields from four times
(45, 30, 15, and 0 min before the model free-forecast time) are
used to derive latent heating-based temperature tendency

FIG. 3. Data assimilation flow diagram for the hourly updated Rapid Refresh (v4) and HRRR (v3) models. (Updated
from Fig. 2 in B16 for a more recent version of the Rapid Refresh.) Application of radar (and proxy lightning) reflectiv-
ity through latent heating (radar-LHI) is indicated by the dark blue boxes/arrows and italics text in boxes, including ap-
plication of the temperature tendency within the diabatic DFI (red italics “Radar-LH-DFI”) for the 13-km RAP and
within the 1-h pre-forecast integration for the 3-km HRRR (blue italics “Forward-radar-LH”).
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fields that are prescribed (in place of the model microphysics
scheme computed temperature tendency) for four successive
15-min periods during the pre-forecast integration period
(60–45, 45–30, 30–15, and 15–0 min prior to the final model ini-
tialization time). This application of the heating during a pe-
riod prior to the time of the observed radar reflectivity (from
which the latent heating is computed) is considered to be a re-
alistic configuration, as the processes generating the reflectivity
would be occurring during a time prior to that observed reflec-
tivity. The 15-min update of the observed radar reflectivity dur-
ing the pre-forecast integration simply allows the latent heating
to be based on the most recent evolving observed reflectivity.

c. Illustration of the impact of the radar-LHI on RAP
model fields

To provide a sample illustration of the impact of the radar-
LHI, we show selected RAP fields from a run with and with-
out radar-LHI (specifically radar-LH-DFI for this RAP run).
The case is from a 0000 UTC 12 August 2011 initialization of
a squall line. Figure 4 shows a comparison of RAP model re-
flectivity fields (including an estimate from the convective pa-
rameterization of rain rate) with the observed composite
(column-maximum) radar reflectivity mosaic for the 0-h
model initial fields (after the DFI application) and the 1-h
model free-forecast fields, for two runs: without the radar-

LHI (left column) and with the radar-LHI (center column).
As can be seen, the radar-LHI technique results in a signifi-
cant enhancement of the convective system, both in the 0-h
model initial field (top row) and the 1-h model forecast field
(bottom row), compared to the no radar-LHI run. It is impor-
tant to note that analysis of the fields (not shown) indicates
that, for this 13-km RAP case, the radar-LHI is projecting
onto both parameterized convection (via the Grell–Freitas
cumulus parameterization used in the RAP) and explicitly
resolved hydrometeors (coarsely resolved explicit representation
of the convective system). While the signal from the radar-LHI
can clearly be seen, the largely parameterized 13-km model
depiction of the convection is not able to adequately capture
the observed squall-line details.

For the same case, Fig. 5 shows the corresponding vertical
cross sections of RAP horizontal convergence (positive values
indicate convergence, negative values indicate divergence)
along a cross section through the convective system for the 0-h
model initialization (top row) and the 1-h model forecast
(bottom row). As can be seen in the column on the left (the
run without the radar-LHI in the diabatic DFI) the conver-
gence values are small, with no enhancement associated with
the convective system. In contrast, the panel in the upper right
(0-h model initialization after the DFI, with the radar-LHI)
shows a clear pattern of low-level convergence (yellow to

FIG. 4. Composite reflectivity for (top) 0000 and (bottom) 0100 UTC 12 Aug 2011 from RAP forecasts for initial conditions at
0000 UTC and from observations (composite reflectivity from MRMS). (left) Without radar-LH-DFI, (center) with radar-LH-DFI, and
(right) observed. Red dashed line is location for cross sections in Fig. 5. Color bar for reflectivity (dBZ) is shown at the bottom of the figure.
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orange region near the ground) and accompanying upper-
level divergence (green to blue shading) in the 200–300-hPa
layer. As the lower right panel shows, this vertically aligned
pattern intensifies during the first forecast hour, as the convec-
tion induced by the radar-LHI strengthens. Thus, heating as-
sociated with the temperature tendency specification in the
radar-LHI induces these fields (and associated updraft), lead-
ing to a more pronounced convective evolution. Other tests
(not shown) have indicated that, as expected, the response is
modulated by the instability and other factors in the local envi-
ronment within the model. The response is also modulated by
the strength of the heating, which is controlled by the assumed
convective time period (Dtcond) in Eq. (1) and Table 2.

3. Radar-LHI retrospective study and results

We now present results from a retrospective study to illus-
trate the impact of the radar-LHI assimilation technique (ap-
plied within both the RAP and HRRR model) on HRRR
model forecasts of reflectivity. The limited scope of this study
does not include objective assessment of the impact of the

assimilation technique on other model fields, but in multiple
years of operational application of this technique we have gen-
erally seen minimal systematic impacts on other fields (other
than those specifically associated with the modifications to the
precipitation regions). J22 provides extensive verification re-
sults from different versions of the operational RAP and
HRRR. In section 3a, we describe the experiment design and
in section 3b describe expected diurnal and regional aspects of
the results. In section 3c, we show verification statistics (CSI
and bias) to quantify the overall forecast performance from the
four radar assimilation experiments and examine some diurnal
and regional aspects of the verification. In section 3d, we com-
plement the statistical assessment with examination of sample
forecast reflectivity fields from the four experiments initialized
at two different times of the day.

a. Experiment design

To document the impact of both the RAP-based and
HRRR-based radar-LHI on HRRR forecast reflectivity fields,
a retrospective experiment was conducted including 28 cases
covering a broad range of initialization times across the diurnal

FIG. 5. Horizontal convergence in vertical cross sections along line from Fig. 4. (top) From RAP for initial
conditions at 0000 UTC 12 Aug 2011 and (bottom) 1-h forecast at 0100 UTC 12 Aug 2011. Color bar for reflec-
tivity (1024 s21) is shown in the middle of the figure.
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cycle during a 3-day period (17–19May 2013). Table 3 provides
a summary of the four different 15-h forecast experiments, des-
ignated with two letter identifiers, with the first letter (Y or N)
indicating whether the radar-LH-DFI was performed in the
RAP and the second letter (Y or N) indicating whether the
forward-radar-LH was performed in the HRRR. We note that
in all four experiments, the 13-km RAP is hourly cycled, and
the digital filter initialization is included (but without the radar-
LH-DFI for the NN and NY experiments) and the 3-km HRRR
pre-forecast integration is included (but without the forward-
radar-LH for the NN and YN experiments), followed by the ap-
plication of the GSI and cloud analysis to the HRRR grids.
The only aspect that is varied in the experiments is the speci-
fication of radar reflectivity-based latent heating (via the two
different procedures of the “radar-LHI” technique in the two
different models).

b. Expected diurnal and regional aspects

Based on the diurnal and regional characteristics of warm
season convection (Carbone and Tuttle 2008; Fabry et al.
2017), as well as the regional WSR-88D radar coverage differ-
ences (Klazura and Imy 1993), we expect to see diurnal and
regional differences in the impact from the radar data assimi-
lation technique, which is confirmed in our experiences with
the radar-LHI. In particular, we have seen a significant diur-
nal aspect to the performance, with greater impact from the
radar-LHI for runs initialized during the evening and over-
night hours and reduced impact for runs initialized during the
daytime hours, especially right before the typical time for CI.
This is to be expected, as in the absence of observed convec-
tion only the convection suppression aspect of the radar-LHI
can yield forecast improvement. Thus, during the late morn-
ing through midday period of minimum convection during the
warm season (across CONUS), we expect a minimum in fore-
cast skill improvement from the radar-LHI. This somewhat
extends into the period after CI as well, when the areal extent
of convection is small and there is relatively less signal for the
radar-LHI than during the later periods of the diurnal convec-
tive evolution. Conversely, during the evening and overnight
hours, as the convection typically grows up-scale (and may
not have been well represented with assimilation of just con-
ventional observations), we expect a greater impact from the
radar-LHI. Highlighting these diurnal aspects to the radar as-
similation impact is a key part of our assessment.

We also expect to see regional differences, especially be-
tween the eastern and western United States. Warm-season
convection in the eastern United States has a strong diurnal
cycle, with a tendency for smaller-scale afternoon convection
to grow up-scale and evolve into larger-scale convective sys-
tems continuing overnight and then dissipating in the morning
hours the next day. Carbone and Tuttle (2008), Fabry et al.
(2017), and other studies have well documented these re-
gional and diurnal aspects to warm-season convection over
the United States. In the western United States, warm-season
convection is even more closely associated with the diurnal
heating cycle, with significant dissipation of convection during
the evening into overnight hours and fewer large-scale

convective systems (compared to the eastern United States).
Western U.S. convection also is strongly tied to local terrain
forcing and has a smaller scale than eastern U.S. convection.
Areas of elevated convection (much of it nocturnal) are also
more common in the eastern United States. There are also
significant WSR-88D radar coverage differences between the
eastern and western United States (Klazura and Imy 1993).
This affects both the radar assimilation across the west (where
augmentation with lightning data is likely more helpful than
in the east) and radar verification in the West (due to the re-
duced radar observation coverage). While a detailed assess-
ment of regional aspects of the radar assimilation impact is
beyond the scope of this paper, we show selected statistical re-
sults from both the eastern and western United States,
highlighting how regional differences affect the diurnal as-
pects of the radar data assimilation impact.

c. Reflectivity skill score assessment

To quantify the overall impact on model reflectivity forecasts
for each of the four experiments, values for two categorical
skill scores (applied to the forecast reflectivity field) are shown
for the four experiments. The scores are the critical success in-
dex (CSI; Doswell et al. 1990) and the frequency bias com-
puted for the 30-dBZ threshold over verification domains
covering the eastern and western United States (divided by
1008W longitude), using the MRMS composite reflectivity
mosaic as verification truth. To provide some degree of a
“neighborhood” skill assessment (Weygandt et al. 2004; Ebert
2009), the CSI is computed after the forecasts andMRMSmosaic
have been upscaled to a 20-km grid using a budget interpolation
procedure designed to preserve area-averaged values. Based on
extensive assessments of CSI scores for this and similar retrospec-
tive case studies, we have found that this combination of reflectiv-
ity threshold and upscaling values provides a good quantification
of forecast skill that agrees well with our subjective assessments.

CSI and frequency bias scores, averaged over the entire
28-run retrospective study, are shown as a function of fore-
cast length in Fig. 6, for both eastern (E) and western (W)
U.S. verification regions. Examination of the CSI scores as
functions of forecast length for both E and W indicates very
similar overall performance for the three experiments that
have radar-LHI applied on at least one of the grids (RAP
or HRRR), with high CSI scores at the initial time decreasing
fairly rapidly during the first two forecast hours, then more
gradually during the next three forecast hours. The similarity

TABLE 3. Retrospective experiments for the May 2013 test
period. For each experiment performed, the component of
radar-LHI in both the RAP and HRRR is indicated, as well as
the condensation time period.

Expt name
Radar-LH-DFI in RAP

(Dtcond)
Forward-radar-LH in

HRRR (Dtcond)

NN No No
YN Yes (10 min) No
NY No Yes (20 min)
YY Yes (10 min) Yes (20 min)
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of the CSI score over the entire forecast length for all three of
these experiments (YY, YN, NY) is quite striking and indicates
that the model convective response (for these convection-
dominated cases) is quite similar for the different radar-LHI
procedures. The CSI scores for these three experiments stand
in contrast to the result for the NN experiment, which has no
radar-LHI applied on either domain. For this experiment, the
CSI is low at the initial time but increases with forecast length
through the first 6–7 h, closely matching the other CSI scores
thereafter. Comparison of the E region versus W region shows
a greater benefit from the reflectivity assimilation for the E re-
gion during the first 3 h, with higher scores for all experiments
for the E region through the entire 15-h forecast period. This
is likely related to the larger scale for some of the convection
over the E region and also a function of the very high bias in
the W region, as seen in Fig. 6d.

Examination of the bias scores for the E region reveals
modest differences among the three experiments with radar-
LHI assimilation for the E region and similarly quite high bias
values for the W region. The YY experiment has the highest
bias through the first five forecast hours. We also see the appli-
cation of the radar-LHI on only the 3-km HRRR domain
(NY) initially yields a higher bias than application of the radar-
LHI on only the 13-km RAP domain (YN), but these differ-
ences are gone by six hours into the model forecast. Overall,
the average bias for the three radar-LHI experiments (YY,
YN, NY) grows rapidly during the first few hours of the
model forecast, reaching a maximum of about 1.8 at 4 h into
the free forecast, then gradually decreasing to a value of
about 1.6.

For the W region, bias values quickly grow to near 3.5 for all
experiments, including the NN experiment with no reflectivity
assimilation. While issues with the more limited radar coverage
across the western United States are likely a factor in these high
biases (especially for a high reflectivity threshold like 30 dBZ),
these results support the notion that the model may have been
too active with convection in the W region. For reference, the
3-km base rate (fraction of grid points with observed values
above the threshold) values for reflectivity. 30 dBZ (averaged
over all forecast lengths in Fig. 6) for the W and E regions are
0.007 and 0.018, respectively, indicating the significantly reduced
MRMS coverage of 30-dBZ reflectivity over the W region. We
have examined W region bias plots for lower reflectivity thresh-
olds (25 and 20 dBZ), and they reveal differences from the W
region 30-dBZ plot (Fig. 6d). For both lower thresholds, all
three of the reflectivity assimilation experiments (YY, NY,
YN) produce a modest lowering of the high reflectivity bias
(compared to the NN experiment.) for the first six hours of
the forecast. For the E region, the bias plots for the 25- and
20-dBZ reflectivity thresholds look similar to the E region
30-dBZ bias plot (Fig. 6b).

To further assess the diurnal aspects of the radar assimila-
tion impact, we now show a comparison of CSI and bias
scores as a function of forecast length for the four experi-
ments for an average of five model initialization times during
(i) the overnight ongoing convective period (0300, 0400, 0500,
0600, 0700 UTC) and (ii) the afternoon convective growth pe-
riod (1800, 1900, 2000, 2100, 2200 UTC). While our sample size
is limited (seven overnight cases and six afternoon cases), it en-
ables a comparison of the radar data assimilation impacts for

FIG. 6. Overall average categorical verification statistics for the 30-dBZ reflectivity threshold for the four ex-
periments as a function of forecast length. (a),(c) The critical success index (CSI) up-scaled to a 20-km grid and
(b),(d) the frequency bias on the native 3-km grid for (left) the eastern U.S. region and (right) the western U.S.
region. See text for additional details.

W EYGANDT E T A L . 1427AUGUST 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:32 PM UTC



these two initialization time periods. Similar to Fig. 6, Fig. 7
shows a comparison of CSI and bias scores, but now for the
five overnight initialization times versus the five afternoon ini-
tialization times for the E region. The CSI scores confirm the
expectation that the radar assimilation technique is more suc-
cessful for overnight initializations compared to afternoon ini-
tializations, with a greater skill score increase for the three
assimilation experiments over the NN experiment for the first
several forecast hours. This is consistent with the larger
amount of ongoing observed convection likely occurring over-
night and the likely greater difficulty during the overnight pe-
riod of initiating new model convection (to catch up with
missed convection), without the radar assimilation (due to the
increased convective inhibition overnight). The bias evolu-
tions are also distinctly different, with all experimental biases
growing through the 15-h forecast period for the overnight ini-
tializations. Again, not surprisingly, the bias for the NN exper-
iment is much lower than the other experiments (through
about 8 h). We note that the enhanced bias increase beginning
around 9 h may be associated with the morning time period of
rapid decrease in observed convective coverage.

For the afternoon initialization times, the CSI improvement
from the reflectivity assimilation is noticeably reduced in mag-
nitude and duration. Interestingly, the degree of bias increase
during the first few hours is amplified by the HRRR-based as-
similation (experiments YY and NY). This is consistent with
the smaller-scale latent heating during the HRRR pre-forecast
hour immediately enabling convective development even without

any latent heating in the RAP. This is in contrast to the early
overnight period, when the RAP heating in conjunction with the
HRRR heating (experiment YY) yields a higher bias than the
experiment with HRRR heating alone (NY).

Figure 8 shows a similar comparison for the W region and
the diurnal impacts are even more pronounced. The CSI scores
show modest forecast improvement from the radar assimilation
for the first few hours for initializations during the overnight
period, but only slight skill improvement for the initializations
during the afternoon period. The bias plot for the afternoon in-
itializations (Fig. 8b) shows similarly very high biases for all
four experiments for the convectively active afternoon period
and extending into the late evening (about the first eight for-
ecast hours). While the limitations with the observed radar cov-
erage in the west may have played a significant role in these
high biases, these results suggest that the model likely
produced an overly active diurnal cycle of convection over the
W region that was independent of any radar assimilation.
While further assessment of the various W region issues is be-
yond the scope of this paper, these results provide further in-
formation about the performance of the assimilation technique
for different regions and show strong consistencies with the di-
urnal aspects seen in the E region verification. For the overnight
initializations, the rapid increase in bias later in the forecast
(beginning after forecast hour 11 in Fig. 8b, 1400–1800 UTC
valid times) for all four experiments, may indicate the begin-
ning of an overly active diurnal convective cycle in the model
across the W region.

FIG. 7. Categorical verification statistics for the 30-dBZ reflectivity threshold for the four experiments as a function
of forecast length for an average of (left) five overnight initialization times (0300, 0400, 0500, 0600, and 0700 UTC)
and (right) five afternoon initialization times (1800, 1900, 2000, 2100, and 2200 UTC). (a),(c) The critical success index
(CSI) up-scaled to a 20-km grid and (b),(d) frequency bias on the native 3-km grid, all for the eastern U.S. region. See
text for additional details.
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d. Two case study assessments

To further illustrate some of the results seen above, we pre-
sent short-range forecast images from two archetype cases: an
overnight case with ongoing convective systems and an after-
noon case with growing convection. Figure 9 shows the over-
night case, with 15-min, 1-h, and 2-h forecast reflectivity fields
from all four retrospective experiments for HRRR runs ini-
tialized at 0500 UTC 18 May 2013 [displayed over the north-
ern plains region (Nebraska, South Dakota, North Dakota,
Minnesota, Iowa), zoomed-in from the full HRRR integration
domain]. Also shown are corresponding MRMS radar refl-
ectivity analyses (over a matched region) for the three fore-
cast times, indicating multiple ongoing convective systems
over the region. The leftmost column shows the reflectivity
field 15 min into the free-forecast period, providing clear evi-
dence that the largest immediate (15 min) impact on the re-
flectivity field is from the inclusion of the forward-radar-LH
in the HRRR 1-h pre-forecast initialization (YY and NY ex-
periments). With no radar-LHI (in either the RAP or the
HRRR, experiment NN), there is only weak scattered convec-
tion. This indicates that, for these experiments, the model was
unable to reproduce most of the observed strong convection
without the radar reflectivity assimilation in at least one of the
model systems (RAP or HRRR). The reflectivity that does
exist at 15 min in experiment NN is likely mostly from rem-
nants of light gridscale precipitation in the RAP (interpolated
to the HRRR domain in the preprocessing). Interestingly, ap-
plication of radar-LHI within the RAP, but not the HRRR
(experiment YN), results in very little strong (.40 dBZ) con-
vective development during the 1-h pre-forecast (now without
forward-radar-LH) and the first 15 min of the free-forecast,
but strong convection does develop by 1 h. With no HRRR

forward-radar-LH, this convective development in the
HRRR is due primarily to the induced low-level conver-
gence and upper-level divergence resulting from the RAP
radar-LH-DFI. Note that even for the two experiments with
HRRR forward-radar-LH (YY and NY), noticeable differ-
ences exist in the 15-min reflectivity fields, with somewhat
larger coverage of high reflectivity in the YY fields relative to
the NY fields. By one hour, the YY and NY experiments have
continued their respective developments, with the greatest
small-scale intensity seen in the HRRR-only forward-radar-LH
experiment (NY). We also see that, by 1-h, convective develop-
ment is underway for the RAP-only radar-LH-DFI experiment
(YN). In contrast, the experiment with no radar-LHI (in either
RAP or HRRR, NN) still only shows minimal development.
By 2-h, the YY and NY experiments look similar, but with
slightly less coverage for the HRRR-only experiment (NY).
The convective evolution in the RAP-only (YN) experi-
ment is continuing to catch up, while the convective devel-
opment in the NN experiment still significantly lags the
other experiments.

We now contrast the above results with those from a simu-
lation initialized much earlier in the diurnal convective cycle,
when convection was rapidly developing and expanding in
coverage. It is important to note that this time is near the
time of maximum surface temperature for the day, so we ex-
pect there to be a relative minimum in convective inhibition
(CIN) and a greater ease of CI in the model with or without
application of the radar-LHI. Similar to Fig. 9, Fig. 10 shows
the 15-min, 1-h, and 2-h HRRR forecast reflectivity fields from all
four experiments, but now for a 2200 UTC 17 May 2013 model
initialization time, focusing on a growing convective line that de-
veloped as a small cluster of storms during the 2000–2100 UTC

FIG. 8. As in Fig. 7, but all verification statistics are for the western U.S. region. See text for additional details.
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FIG. 9. HRRR 15-min, 1-h, and 2-h forecast composite reflectivity fields (from a portion of the HRRR domain) for all four radar-
LHI experiments for the overnight ongoing convection case (model initialization at 0500 UTC 18 May 2013). Also shown are the
corresponding MRMS observed composite reflectivity fields. The reflectivity color bar (dBZ) is shown near the top of the figure.
See text for additional details.
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time period, with the pre-forecast period occurring just after that
from 2100 to 2200 UTC.

In addition to illustrating the performance of the different
experiments for a case with model initialization during the af-
ternoon storm growth time period, this case provides an

interesting example of a potential issue that can occur when
the forward-radar-LH is applied during the 1-h pre-forecast
of the HRRR. The 15-min forecast fields in the left column
show somewhat expected results, with representation of the
observed short squall-line segment over northwest Nebraska

FIG. 10. As in Fig. 9, but for the afternoon growing convection case (model initialization at 2200 UTC 17 May 2013).
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in all three of the radar-LHI runs and no clear depiction of it
in the NN run. Further examination of the two runs with the
HRRR forward-radar-LH (YY and NY) reveals another
weak line segment in advance of the main one. This is espe-
cially evident in the NY experiment. Detailed assessment of
fields from the YY and NY runs (not shown) indicates that,
for this case, the forward-radar-LH operating over the hour-
long pre-forecast period in the 3-km HRRR generated a for-
ward propagating low-level outflow boundary that, in con-
junction with a weak preexisting environmental boundary,
served as a focusing mechanism for the generation of the spu-
rious leading line. The 1-h forecasts shown in the middle col-
umn show the continued development of this leading line in
the two HRRR forward-radar-LH experiments (YY and
NY), relative to the experiment with just radar-LH-DFI in
the RAP (YN). Also, some weak development along the pre-
existing boundary is now evident in the run with no radar-
LHI (NN). It is interesting to note that while the 1-h forecast
from the run with radar-LHI only in the RAP (YN) does not
show a realistic line-like structure, this experiment avoids the
spurious leading line development found in the YY and NY
experiments. Limitations of the study preclude further de-
tailed assessment of this run, but consistent with the example
in Fig. 6, application of the radar-LHI on a larger scale within
the RAP (compared to the HRRR) creates a larger-scale
low-level convergence/upper-level divergence field focused
around the radar-observed storms that may be helping to
inhibit nearby storm development. By 2 h into the forecast
(right column), the four experiments are more similar,
though the convective evolution in NN still lags that of the
other experiments. Interestingly, at 2 h a leading line has
developed in the RAP-only radar-LH-DFI experiment
(YN), while in the YY and NY experiments the two lines
from the 1-h forecasts appear to have merged somewhat.

4. Summary and conclusions

An innovative assimilation technique using radar reflectiv-
ity data to initialize NOAA operational weather prediction
models is described in this paper. This technique, which
uses latent heating specified from radar reflectivity (and can
also accommodate lightning data and other indicators of
convection or precipitation), was first implemented in 2009
at NCEP and continues to be used in 2022 in the NCEP-
operational RAP and HRRR models. This study provides
documentation of the performance of two formulations
(related procedures) of a radar reflectivity-based latent
heating initialization (radar-LHI) technique. The first procedure
(radar-LH-DFI), originally developed for the RUC, is applied in
the 13-km RAP and involves specification of a radar reflectivity-
based temperature tendency in the forward model portion of the
diabatic digital filter initialization (DFI). This temperature ten-
dency is derived from the latent heating estimate based on reflec-
tivity and an assumed convective time scale, and is used in the
DFI in place of the temperature tendency calculated from
the explicit microphysics and the cumulus parameterization.
For the 3-km HRRR procedure (forward-radar-LH), no DFI is
used, and the temperature tendency is specified during an hour-

long model pre-forecast forward integration period. In this pa-
per we document the reflectivity forecast improvement in the
HRRR from application of the radar-LHI in the RAP, HRRR,
and in both the RAP and HRRR. We also provide an illustra-
tion of the time evolution of the forecast reflectivity for all the
experiments for two archetype times: afternoon just after CI
and overnight with ongoing mature convection. Differences in
the behavior of the various radar-LHI applications for these
different times of day are highlighted.

This radar-LHI technique has been a backbone of the
NOAA rapidly updated numerical weather prediction capa-
bility since 2009, and it is important to document the tech-
nique and the behavior of its different formulations. For the
convective period studied here, it produces a significant im-
provement in short-range reflectivity forecasts (through about
6 h). This improvement was seen both in average CSI statis-
tics and individual case study images. While use of the radar-
LHI technique for either the RAP or the HRRR results in
somewhat excessive convection for the first few hours of the
model forecast (as indicated by the elevated bias score), the
CSI scores are clearly improved during this period and the im-
pacts of the radar-LHI diminish gradually, leading to leveling
of the CSI scores to near the no radar-LHI average values by
about the 7-h forecast mark. Reductions in the strength of the
latent heating in the RAP for more recent RAP/HRRR ver-
sions (see Table 2) have yielded a reduction in the elevated
bias scores for the very short-range forecasts (see Fig. 2 in J22).

In addition to documenting the improvement in reflectivity
forecast skill for different combinations of the radar-LHI
technique for eastern versus western U.S. regions, we have
illustrated differences in the forecast impact between two ar-
chetype periods of the diurnal cycle (afternoon and over-
night), for the eastern and western regions. These diurnal and
regional performance differences are consistent with the diu-
rnal and regional differences in observed convection and re-
gional radar coverage differences. Documentation of these
performance aspects is useful for evaluating the utility and
limitations of the technique and as a benchmark for explora-
tion of improved reflectivity assimilation methods.

For the RAPv5/HRRRv4, which was operationally imple-
mented at NCEP on 2 December 2020, we have retained the
radar-LHI for both the RAP and the HRRR, but are supple-
menting it with an ensemble Kalman filter (EnKF)-based ra-
dar reflectivity algorithm for the HRRR, which is applied
within the HRRRDAS (D22). A DA flowchart comparison
between HRRRv3 and HRRRv4 is provided in D22 (their
Fig. 3). Versions of the radar-LHI and EnKF-based reflectiv-
ity assimilation techniques will be used in the future NOAA
Rapid Refresh Forecast System (RRFS) which is slated to re-
place the NOAA operational RAPv5/HRRRv4, and this will
be described in future papers. Slightly modified forms of this
radar-LHI technique have also been used experimentally to as-
similate satellite-based cloud-top cooling rate data (Mecikalski
et al. 2008) and GOES-R Geostationary Lightning Mapper
data (Rudlosky et al. 2019).
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